

SPx Application Note

CP-16-110-163 Version 1.1 Page 1

Running SPx Applications as Services
Converting applications including SPx Server and SPx Fusion into background services

Summary

Many users of Cambridge Pixel’s software applications run them with their normal native

UI. However, backend applications including SPx Server for tracking and radar video

distribution, SPx Fusion for track combination and SPx Track Manager for format

conversion can also be run in the background, using methods supported by the Windows

or Linux platforms for running applications as services. This application note describes

how to configure and deploy some key applications as services.

Contents

Introduction .. 1
Web Interface ... 1
Disabling the native UI ... 2
Windows using Task Scheduler .. 3
Windows using Service Wrapper .. 6
Linux using /etc/rc.local ... 8
Linux using systemd .. 8
Linux using init .. 9

Introduction

This application note addresses the configuration and use of SPx Server and SPx Fusion

as background/service applications. The techniques described here are, however,

applicable to any SPx software application that does not rely on the availability of a

native graphical user interface.

Web Interface

Many SPx applications support a Web-based interface. This can be very useful as a

substitute for the native UI when the application is being run in the background. To

ensure this interface is available, set the appropriate parameters in the application’s .rpi

configuration file (this is a text file which can be edited using Notepad, vi or equivalent).

WebServer.Available = 1

WebServer.Port = 8090

Each application uses a different default web server port to avoid conflict, and normally

this should be left at its default setting.

A basic login facility is supported by the application’s built-in web server, and this may be

activated by setting further parameters in the configuration file.

SPx Application Note

CP-16-110-163 Version 1.1 Page 2

WebServer.AuthType = 1

WebServer.Username = user

WebServer.Password = password

The desired username and password can be substituted in place of those shown above.

When the web server is configured in this way, a simple login screen will be presented as

shown below.

Disabling the native UI

The next stage in the process is to suppress any native UI that the application would

normally provide.

SPx Server under Windows

To start SPx Server running on Windows as a background process, first set the

parameter in the configuration file SPxServer.rpi that determines what level of user

interface is available.

Svr.GuiAvailable = -1

If you run SPx Server with this configuration and no further changes, it will have no

visible presence either on the Windows desktop or in the system tray. It can be seen

running under Background Processes in the task manager, but otherwise cannot be

managed.

Other applications under Windows

Applications including SPx Fusion, SPx Track Manager and other applications and utilities

can be run without a UI by setting one of the parameters below (the full name may vary

between applications, so look for the SystemTray parameter):

SPx Application Note

CP-16-110-163 Version 1.1 Page 3

Svr.SystemTray = 1

Application.SystemTray = 1

Applications started directly in this way will appear in the system tray.

SPx Server under Linux

To run SPx Server under Linux without its native UI, just use the executable

spxserver_ng_64 (or spxserver_ng for 32-bit systems) instead of the normal

executable.

Other applications under Linux

Other applications including SPx Fusion and SPx Track Manager only support a command-

line interface under Linux, so the normal executable can be used.

Windows using Task Scheduler

The simplest method for running an application in the background under Windows

without using any third-party software is to use the task scheduler. This allows an

application to be run automatically at startup. The following instructions, while using SPx

Server as an example, apply equally to any SPx application configured as above.

First, invoke the task scheduler from the Windows menu, and create a new task using

the Create Task… option under Actions.

Populate the General tab with the task details:

SPx Application Note

CP-16-110-163 Version 1.1 Page 4

Use the New.. button in the Trigger tab to schedule the task to be run at system startup.

Then use the New.. button in the Actions tab to define the program to be run. Ensure

you fill in the Start in field with the directory in which the SPx Server executable is

located.

SPx Application Note

CP-16-110-163 Version 1.1 Page 5

The setup can now be tested from the main task scheduler screen by right-clicking on the

new task and selecting Run.

The running task will be visible under Background processes in Task Manager.

SPx Application Note

CP-16-110-163 Version 1.1 Page 6

Windows using Service Wrapper

A second approach involves using third-party software to convert the SPx application into

a service using a wrapper. There are several options available, one of which is NSSM

(https://nssm.cc/). This is mature and free software which nonetheless works well under

Windows 10/11, and which will be used in this section to demonstrate the principle.

Once NSSM has been downloaded (use prelease build 2.24-101 or later), unpack it and

place the executable from the win32 or win64 directory, as appropriate, into a directory

referenced in your PATH environment variable. Then open a command prompt with

Administrator privileges. (If a command prompt without elevated privileges is used, you

will receive a Windows security prompt each time you run nssm). The following

command should be used to create the service:

nssm install SPxServer

This will open an editing GUI into which the appropriate information can be entered into

the relevant tabs.

Note that if multiple instances of SPx Server are to be run, a service with a different

name will need to be created for each one, specifying the appropriate configuration file in

the Arguments field.

https://nssm.cc/

SPx Application Note

CP-16-110-163 Version 1.1 Page 7

Once all fields have been completed, press the Install service button. You can then use

the Services dialog to confirm that the service has been correctly installed.

Right-click on SPx Server and select Start to start the service manually, then access the

web interface at http://127.0.0.1:8090/ to confirm correct operation.

The service can be edited at any time using the command

http://127.0.0.1:8090/

SPx Application Note

CP-16-110-163 Version 1.1 Page 8

nssm edit SPxServer

and can be removed using the command

nssm remove SPxServer

If using a MAC-locked licence file, ensure that it is located at the default location of

C:\cp-spx.lic or in the executable directory of SPx Server.

Linux using /etc/rc.local

Under Linux, the simplest method of automatically starting one or more SPx applications

at startup is by the addition of commands to the file /etc/rc.local. For example:

cd /opt/CambridgePixel/SPxServer-V1.94/Servers/SPxServer

./spxserver_ng_64 &

If using a MAC-locked licence file, ensure that it is located at the default location of

/usr/local/SPx/cp-spx.lic or in the executable directory of SPx Server. Otherwise,

add a line

export SPX_LICENSE_FILE=/opt/CambridgePixel/cp-spx-001-0001

above the lines above, modifying the path and name of the licence file as appropriate.

Linux using systemd

A more flexible and reliable approach is to use the systemd facility, widely supported in

modern Linux distributions. This allows SPx applications to be started and stopped at will

and to be automatically run at system startup. To use this approach, first create two

scripts that will be used to start and stop SPx applications, and put them in a convenient

location, making sure they have execute permission:

/opt/CambridgePixel/start-spx:

#! /bin/sh

exec 2>&1 >/opt/CambridgePixel/log.txt

export SPX_LICENSE_FILE=/opt/CambridgePixel/cp-spx-001-0001.lic

cd /opt/CambridgePixel/SPxServer-V1.94/Servers/SPxServer

exec ./spxserver_ng_64

/opt/CambridgePixel/stop-spx

#! /bin/sh

killall spxserver_ng_64

If using a MAC-locked licence file, ensure that it is located at the default location of

/usr/local/SPx/cp-spx.lic or in the executable directory of SPx Server, or set its path

explicitly as in the example above.

Next, create a system service file:

SPx Application Note

CP-16-110-163 Version 1.1 Page 9

/etc/systemd/system/spx.service:

[Unit]

Description=SPx Server

After=network.target

[Service]

Type=simple

Restart=on-failure

RestartSec=5

ExecStart=/opt/CambridgePixel/start-spx

ExecStop=/opt/CambridgePixel/stop-spx

[Install]

WantedBy=multi-user.target

The service can be enabled or disabled for automatic startup using these commands:

systemctl enable spx

systemctl disable spx

The service can be manually started, stopped or restated using these commands:

systemctl start spx

systemctl stop spx

systemctl restart spx

If you need to run more than one SPx application, the scripts can be amended

accordingly, ensuring that the last app to be started is not run in the background:

/opt/CambridgePixel/start-spx:

#! /bin/sh

exec 2>&1 >/opt/CambridgePixel/log.txt

export SPX_LICENSE_FILE=/opt/CambridgePixel/cp-spx-001-0001.lic

cd /opt/CambridgePixel/SPxFusion-V1.94.1/Servers/SPxFuse

./spxfuse &

sleep 2

cd /opt/CambridgePixel/SPxServer-V1.94/Servers/SPxServer

exec ./spxserver_ng_64

/opt/CambridgePixel/stop-spx:

#! /bin/sh

killall spxserver_ng_64

killall spxfuse

Linux using init

The init mechanism is the older mechanism for managing startup of applications. The

systemd method should normally be used in preference. To use the init method, first

create the start-spx and stop-spx scripts as above. Then create the following file:

SPx Application Note

CP-16-110-163 Version 1.1 Page 10

/etc/init.d/spx:

#! /bin/sh

BEGIN INIT INFO

Provides: spx

Required-Start: $local_fs $remote_fs $network $syslog

Required-Stop: $local_fs $remote_fs $network $syslog

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

Short-Description: Start spx

END INIT INFO

PATH=/bin:/usr/bin:/sbin:/usr/sbin

DAEMON=spxserver_ng_64

. /lib/lsb/init-functions

case "$1" in

 start)

 log_daemon_msg "Starting SPx" "spx"

 start_daemon /opt/CambridgePixel/start-spx

 log_end_msg $?;;

 stop)

 log_daemon_msg "Stopping SPx" "spx"

 /opt/CambridgePixel/stop-spx

 log_end_msg $?;;

 status)

 if pidof $DAEMON >/dev/null 2>&1; then

 echo "$DAEMON is running"; exit 0

 else

 echo "$DAEMON is NOT running"; exit 3

 fi;;

 force-reload|restart)

 $0 stop

 $0 start;;

 *)

 echo "Usage: /etc/init.d/spx {start|stop|restart|force-reload}"

 exit 1

 ;;

esac

exit 0

The script can be enabled or disabled for startup using these commands:

update-rc.d spx defaults

update-rc.d spx remove

The applications can be manually started, stopped or restarted using these commands:

service spx start

service spx stop

service spx restart

< End of document >

	Converting applications including SPx Server and SPx Fusion into background services
	Introduction
	Web Interface
	Disabling the native UI
	Windows using Task Scheduler
	Windows using Service Wrapper
	Linux using /etc/rc.local
	Linux using systemd
	Linux using init

