

SPx Application Note

CP-16-110-116 Version 1.3 Page 1

Generating Track Message Data
How to use the SPx library to generate track data as UDP messages on the network.

Summary

It is sometimes necessary or desirable to generate track messages without using SPx

Server or SPx Radar Simulator.

For example, to translate existing track information into a format compatible with

standard SPx applications, such as SPx Radar Simulator or SPx Fusion Server.

This application note explains how such data may be generated and send onto the

network, using standard SPx modules.

Overview

Generating track messages in a format that SPx applications can then receive and

process or display may be useful in situations where track data exists in another format

and needs to be translated into a format that SPx can accept.

Using standard modules available within the SPx library it is straightforward to generate

and send valid SPx track messages onto the network. The steps involved are as follows:

1. Create an SPx packet sender object to handle packetisation and distribution of

track messages.

2. Populate a suitable SPx track structure with appropriate data values, each time a

new track message is created or an existing track is updated.

3. Form a track message from the SPx track structure created/updated above.

4. Pass the track message into the packet sender for dispatch onto the network.

The SPx library provides a static function, SPxRemoteServer::TrackPackNet(), which

may be used to pack the SPx track structure into a message buffer, suitable for sending

by the packet sender. This function handles byte-swapping, if appropriate, to form the

data into network (big-endian) order.

The packet sender object handles all aspects of forming the message data into a packet

and sending that packet onto the network. A single packet sender object should be

created to provide a stream of track data and persist for the duration of the program.

This object is simply created by the following line of code:

SPxPacketSender* TrackSender = new SPxPacketSender();

SPx Application Note

CP-16-110-116 Version 1.3 Page 2

The address that track messages are then output to is simply set using the

SPxPacketSender::SetAddress() function.

For example, the following line of code will configure the packet sender object to output

messages to multicast address 239.192.50.79 and port number 5079:

TrackSender->SetAddress(“239.192.50.79”, 5079);

Filling a Structure

An SPx track structure should be filled each time a new track message is to be sent via

the packet sender. The SPx track format supports varying levels of information within a

track message, with options for “minimal”, “normal” and “extended” messages, each

containing successively more information. It’s generally desirable to keep the packet as

small as possible, while still conveying all of the relevant/required information. In many

cases the SPx “minimal” track report will contain sufficient information, providing a

unique track ID, position and velocity.

This application note will therefore concentrate on the use of the SPx “minimal” structure

as the container for track data; however, the principles may readily be extended to

“normal” and “extended” messages.

The SPx “minimal” track message format is built from an SPxPacketTrackMinimal C

structure, defined in the “SPxPackets.h” header file as follows:

/* Minimal track reports. */

typedef struct SPxPacketTrackMinimal_tag {

 UINT32 id; /* Track ID (public) */

 UINT8 senderID; /* Sender identification */

 UINT8 status; /* Track status (provisional, confirmed etc.)*/

 UINT8 numCoasts; /* Number of consecutive coasts */

 UINT8 id_ttm; /* TTM id (or 0 if no ID) */

 REAL32 rangeMetres; /* Tracked Range */

 REAL32 azimuthDegrees; /* Tracked Azimuth */

 REAL32 speedMps; /* Speed */

 REAL32 courseDegrees; /* Course */

 REAL32 sizeMetres; /* Smoothed size in metres */

 REAL32 sizeDegrees; /* Smoothed size in degrees */

 UINT32 weight; /* Weight of target (number of samples) */

 UINT32 strength; /* Strength of target (sum of values) */

 UINT8 flags; /* Target flags (SPX_PACKET_TRACK_FLAGS …) */

 UINT8 validity; /* Typically zero, or one of SPX_PACKET_TRACK_INVALID… */

 UINT8 uniTrackType; /* Typically zero, or one of SPxUniTrack::TrackType_t */

 UINT8 sourceIndex; /* Typically zero */

 UINT32 reserved3; /* Reserved, set to zero */

 UINT32 reserved4; /* Reserved, set to zero */

 UINT32 reserved5; /* Reserved, set to zero */

} SPxPacketTrackMinimal;

As a minimum, the ID, range, azimuth, speed and course fields should be correctly filled

with appropriate values, for each update of a given track. The status field should also

normally be set to a value of SPX_PACKET_TRACK_STATUS_ESTABLISHED to indicate that

the track is in the confirmed state. For example:

SPx Application Note

CP-16-110-116 Version 1.3 Page 3

SPxPacketTrackMinimal track = {0}; /* create a new, empty structure */

track.id = 1234; /* set appropriate unique ID */

track.rangeMetres = 5000; /* set current range, in metres */

track.azimuthDegrees = 180; /* set current azimuth, in degrees */

track.speedMps = 30; /* set current speed, in metres per second */

track.courseDegrees = 90; /* set current course, in degrees */

track.status = SPX_PACKET_TRACK_STATUS_ESTABLISHED; /* set status to confirmed */

The ID field uniquely determines the physical target. In order to update an existing

track, successive messages should simply be generated and sent that have the same

value of ID.

Forming a Message

With an appropriate SPx track data structure filled, the next step is to pack this into a

message that can then be sent as the payload of a UDP packet. The SPxRemoteServer

class provides the static TrackPackNet() function, which may be used for this purpose.

This function takes in a pointer to a minimal (plus normal and extended) structure and

packs the data into a message buffer.

The code below demonstrates the use of the TrackPackNet() function to pack a minimal

track structure:

const int bufsz = sizeof(SPxPacketTrackMinimal);

unsigned char* buf = new unsigned char[bufsz];

/*

 * Pack the data into a message buffer

 * (second and third arguments are pointers to “normal” and “extended” structures,

 * simply set to NULL if just creating a minimal track report).

 * Returns the number of bytes in the packed message.

 */

unsigned int msgBytes = SPxRemoteServer::TrackPackNet(&track,NULL,NULL,buf,bufsz);

Sending Messages

Now that the structure has been put into a suitable buffer, the packet sender object can

be employed to dispatch the data onto the network. The SPx packet sender object

provides a convenient function for this purpose, called SendPacketB(). This function

handles the addition of an SPx packet header (which includes a timestamp) to the front

of the track data payload.

The code below demonstrates how to mark the current time and dispatch a track

message, where buf is a suitable message buffer created by the TrackPackNet()

function.

SPxTime_t now;

SPxTimeGetEpoch(&now); /* Mark the current time */

sender.SendPacketB(SPX_PACKET_TYPEB_TRACK_MIN, now, buf, msgBytes);

SPx Application Note

CP-16-110-116 Version 1.3 Page 4

Other Formats

It is straightforward to generate ASTERIX CAT-48 tracks instead of SPx format tracks.

The SPx library provides an ASTERIX encoder class that may be used to convert an SPx

track data structure into an ASTERIX message buffer, which may be sent onto the

network via an SPx packet sender object, as before.

/* Make a new ASTERIX encoder object, to convert SPx track structure

 * to ASTERIX message data.

*/

SPxAsterixEncoder *AsterixEncoder = new SPxAsterixEncoder();

In the following code sample the SPxPacketTrackMinimal structure is converted into an

ASTERIX message buffer, using the BuildCat48() function. Note that the timestamp

information is included in this step, rather than at the message sending stage.

/* Build Asterix track message from SPx track structure */

unsigned int msgBytes = AsterixEncoder->BuildCat48(buf, bufsz,

 0xFFFFFFFF, &now, &track, NULL, NULL);

Then the SPxPacketSender::SendRawBuffer() function is simply used, instead of the

SPxPacketSender::SendPacketB() function, to send the message data onto the

network:

/* Send ASTERIX track onto network */

TrackSender->SendRawBuffer(trackBuf, msgBytes);

< End of document >

	How to use the SPx library to generate track data as UDP messages on the network.
	Overview
	Filling a Structure
	Forming a Message
	Sending Messages
	Other Formats

