HPx-300 Radar Signal Output Card

The HPx-300 Radar Signal Output card generates representative radar signals for system testing, simulation, training or radar video streaming. Under software control, the card generates radar video, trigger and azimuth signals similar to those generated by real radars. This permits radar display or processing systems to be tested and qualified using laboratory-based equipment before installation with the radar.

The HPx-300 is a single-lane (x1) PCI express card, which generates radar signals under the control of host application software. Time-stamped radar video data is passed to the card over the PCI express bus and the card generates the appropriate video, trigger and azimuth data signals in real-time. A first-in-first-out (FIFO) buffer on the card allows the host computer to write a number of radar returns into memory, which the HPx-300 card then outputs at the requested times. The typical buffer size is 100ms, which therefore specifies the latency in processing video through the card. Digital adjustments to the output timing are made to ensure that the output rate of video exactly matches the rate of arrival of data from the host computer.

The HPx-300 card is extremely versatile, supporting a broad range of rotation periods, as well as variable and staggered PRF modes (including variable length returns). In addition to emulating conventionally rotating scan radars, the card may also be configured for counter-rotating, sector scanning or random scan modes. The output signal voltages and types are jumper-selectable, providing a wide range of output signal options.

Typical applications of the HPx-300 include:

Radar Simulation
When the HPx-300 card is teamed with the SPx Radar Simulator software, the result is a highly flexible, configurable and powerful radar simulation tool that can generate analogue radar video, targets, IFF, AIS and navigation data. A key feature of SPx Radar Simulator is the ability to generate synchronised data sets of video, targets and related navigation data when simulating ship-based systems.

Radar Streaming
Radar signals can be moved across an Ethernet network using a server system (HPx-200 plus SPx Server) to digitise the radar signals and distribute the resulting data digitally. The HPx-300 card, along with the SPx software, may then be used to convert the network video back into analogue signals. This approach is applicable if it is desired to input the radar signals into legacy equipment which has the analogue radar interface.

Display Console Testing
Access to live radar signals during console development or testing can be difficult and expensive. HPx-300 provides a convenient and realistic source of radar signals to stimulate display equipment in the absence of a live radar source.
Architecture

<table>
<thead>
<tr>
<th>Form factor</th>
<th>PCI express (x1 lane), full height, half length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Uses standard PCIe power for low signal outputs. Requires auxiliary power through 6-pin PCIe Power Connector</td>
</tr>
<tr>
<td>Platform</td>
<td>Windows 10, Linux</td>
</tr>
<tr>
<td>Processor</td>
<td>x86</td>
</tr>
</tbody>
</table>

Output Signals

<table>
<thead>
<tr>
<th>Analogue Video</th>
<th>2x independent analogue video outputs 8-bit DAC output, 25MHz bandwidth limited 75R output impedance Positive (0 to +5V) or negative (0 to -5V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Video</td>
<td>8 bits of digital video + data signal RS-422</td>
</tr>
<tr>
<td>Trigger</td>
<td>Single-ended (5V to 30V configurable peak output, 75R impedance) Differential (RS-422)</td>
</tr>
<tr>
<td>ACP</td>
<td>Single-ended (5V to 30V configurable peak output, 75R impedance) Differential (RS-422)</td>
</tr>
<tr>
<td>ARP</td>
<td>Single-ended (5V to 30V configurable peak output, 75R impedance) Differential (RS-422)</td>
</tr>
<tr>
<td>Parallel Azimuth</td>
<td>12-bit parallel azimuth RS-422</td>
</tr>
<tr>
<td>SHM</td>
<td>Single-ended (5V to 30V configurable peak output, 75R impedance) Differential (RS-422)</td>
</tr>
</tbody>
</table>

Functional

<table>
<thead>
<tr>
<th>Scanning Mode</th>
<th>Normal rotating, counter-rotating, random scan, sector scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation Period</td>
<td>Configurable from 0.25 to 60 seconds</td>
</tr>
<tr>
<td>PRF</td>
<td>Configurable from 100Hz to 10kHz</td>
</tr>
<tr>
<td>Pre-trigger Delay</td>
<td>Configurable in units of 20ns</td>
</tr>
<tr>
<td>Test Generation</td>
<td>Built-in test pattern generator</td>
</tr>
<tr>
<td>Output</td>
<td>Radar signals</td>
</tr>
</tbody>
</table>

Connectors

<table>
<thead>
<tr>
<th>Radar Output</th>
<th>37W D front panel connector Parallel azimuth signals are available from a IDC header connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI Express</td>
<td>Standard PCI Express x1 edge connector</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Data transfer rate</th>
<th>50 MB/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan rate</td>
<td>Up to 240 rpm</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Cooling</th>
<th>Forced air cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0 to 55C, (Extended temperature version is available, consult factory for details)</td>
</tr>
</tbody>
</table>

Software Support

Board support library (C/C++)
SPx Development Library
SPx Radar Simulator (application, Windows only)